

Segundo dia 30 de setembro de 2025

Problema 4. Encontre infinitas funções diferenciáveis $f: \mathbb{R}^2 \to \mathbb{R}$ tais que f(20, 25) = 2025 e, para quaisquer $x, y \in \mathbb{R}$, valha

$$(f(x,y))^3 + (f_x(x,y))^3 + (f_y(x,y))^3 = 3f(x,y)f_x(x,y)f_y(x,y).$$

Nota: $f_x = \frac{\partial f}{\partial x} e f_y = \frac{\partial f}{\partial y}$.

Problema 5. Seja n um inteiro positivo. No espaço das matrizes $n \times n$ com entradas reais, considere o subconjunto M_n das matrizes com entradas no conjunto $\{-1,1\}$. Demonstre que no mínimo 25% das matrizes em M_n são invertíveis.

Problema 6. Demonstre que existem números reais positivos C e t, com t > 1, tais que se $n \ge 2$ e S é um conjunto de 2n pontos do plano em posição geral, com n pontos vermelhos e n pontos azuis, então há pelo menos Cn^t triângulos com dois vértices vermelhos e um vértice azul cujo interior não contém nenhum ponto de S.

Nota: Um conjunto de pontos é dito em posição geral se não há três pontos colineares.