

Segundo día

30 de septiembre de 2025

Problema 4. Determine infinitas funciones diferenciables $f: \mathbb{R}^2 \to \mathbb{R}$ tales que f(20, 25) = 2025 y para cualesquiera $x, y \in \mathbb{R}$ se cumple que

$$(f(x,y))^3 + (f_x(x,y))^3 + (f_y(x,y))^3 = 3f(x,y)f_x(x,y)f_y(x,y).$$

Nota: $f_x = \frac{\partial f}{\partial x}$ y $f_y = \frac{\partial f}{\partial y}$.

Problema 5. Sea n un entero positivo. En el espacio de matrices $n \times n$ con entradas reales, considere el subconjunto M_n de las matrices con entradas en el conjunto $\{-1,1\}$. Demuestre que al menos el 25 % de las matrices en M_n es invertible.

Problema 6. Demuestre que existen números reales positivos C y t, con t > 1, tales que si $n \ge 2$ y S es un conjunto de 2n puntos del plano en posición general, con n puntos rojos y n puntos azules, entonces hay al menos Cn^t triángulos con dos vértices rojos y un vértice azul cuyo interior no contiene ningún punto de S.

Nota: Un conjunto de puntos en el plano se dice en posición general si no hay tres de estos puntos colineales.