

Primer día

29 de septiembre de 2025

Problema 1. Considere dos conjuntos $\mathcal{P}, \mathcal{Q} \subseteq \mathbb{R}^2$ que satisfacen las siguientes tres condiciones:

- 1. $(n,1) \in \mathcal{P}$ para todo $n \in \mathbb{Z}$.
- 2. Si $(a, b) \in \mathcal{P}$, entonces $(a, 0) \in \mathcal{Q}$.
- 3. Si un trapecio tiene dos lados paralelos al eje-Y, además de dos vértices en \mathcal{P} y los otros vértices en \mathcal{Q} , entonces el punto de intersección de sus diagonales también está en \mathcal{P} .

Demuestre que $\mathbb{Q} \times \{0\} \subseteq \mathcal{Q}$.

Problema 2. Sea $F: \mathbb{R}^2 \to \mathbb{R}^2$ dada por $F(x,y) = (x+y-x^3,y-y^3)$. Defina $F^1 = F$ y $F^{n+1} = F \circ F^n$ para n > 1.

- a) Demuestre que si $|x| \le 1/2$ y $|y| \le 1/2$, entonces $\lim_{n \to \infty} F^n(x, y) = (0, 0)$.
- b) Demuestre que para cualesquiera K > 0, $\varepsilon > 0$, existen un entero positivo n y $(x_0, y_0) \in \mathbb{R}^2$ con $0 < |(x_0, y_0)| < \varepsilon$ tales que $|F^n(x_0, y_0)| > K|(x_0, y_0)|$.

Problema 3. Sea \mathcal{E} una elipse con semiejes a > b y sea B un extremo del eje menor de la elipse. Para todo punto P de la elipse, defina m(P) como la mayor distancia de P a cualquier otro punto de la elipse; es decir, defina la función

$$m(P) = \max_{Q \in \mathcal{E}} PQ,$$

donde PQ denota la distancia de P a Q.

- a) Demuestre que $m(B) \leq m(P)$ para todo punto P de la elipse.
- b) Determine el valor de m(B) en términos de a y b.

La calificación máxima de cada problema es de 10 puntos. Tiempo máximo: 4h 30m.